prove reduction formula for tan nx dx

We use integration by parts to obtain the result, only to come across a small snag: u ex; dv/ dx sin x, so, du/ dx ex; v -cos x ex sin(x) dx -excos x excos x.
Integration by, reduction, formulae, suppose you have to ex sin(x).
Watch Queue, queue _count total loading.
Let's see how it really works.This feature is not available right now.I3 xln x3 - celsa concours master 2 3 I2 x(ln x)3 - 3 x (ln x)2 - 2 I1 x(ln x)3 - 3x (ln x)2 6 I1 x(ln x)3 - 3x (ln x)2 6 x (ln x)1 - I0 x(ln x)3 - 3x (ln x)2 6x (ln x)1.The following is what I have tried to prove the reduction formula of tan n(theta).Sinnx dx sinn-1x sin x dx Let u sinn-1x and dv/ dx sin x So, du/ dx (n-1)sinn-2x cos rab microlight down jacket sale x; v -cos x sinnx dx -sinn-1 x cos x cos x (n-1)sinn-2x cos x dx -sinn-1x cos x cos2 x (n-1)sinn-2x dx -sinn-1x cos.From 1 ex sin(x) dx excos x excos x dx 3, from 2 excos x dx exsin x - exsin x.Suppose you want to find ln x3 dx, which.
Integration by Reduction Formulae In this method, we gradually reduce the power of a function up until it comes to a stage maee concours that it can be integrated.
(n-1) tan (n-2 x) sec2 x dx tan (n-1) x tan (n-2 x) sec2 x dx 1 n-1) tan (n-1) x So we end up with.




Best Answer: tan n(x) dx tan (n-2 x) tan 2 x dx tan (n-2 x) (sec2 x -1) dx tan (n-2 x) sec2 x dx - tan (n-2 x) dx let dv sec2 x; v tan x u tan (n-2) x; du (n-2) tan (n-3).Now, we have to repeat the integration process for excos x dx, which is as follows: u ex; dv/ dx cos x du/ dx ex; v sin x, so, excos x dx exsin x - exsin x dx 2, as you can see, now.Integration by Reduction Formulae is one such method.Ln xn dx Let's use the integration by parts method: u ln xn du/ dx n/xln xn-1; dv/ dx 1 v x ln xn dx xln xn - n/xxln xn-1 xln xn - nln xn-1 If ln xn dx In, then ln xn-1 In-1 Therefore.Tan n x dx tan n-2x tan 2x dx u tan n-2x du/ dx n-2 tan n-3x sec2x; dv/ dx tan 2x sec2x - 1 v tan x - x The integration leads to the following formula : tan n x dx 1/n-1 tan n-1.There are plenty of instances where the process of integration is neither straight forward nor easy to come up with.Let's make excos x dx the subject from both equations and equate them.Cosnx dx cosn-1x cos x dx Let u cosn-1x and dv/ dx cos x So, du/ dx -(n-1)cosn-2x sin x; v sin x cosnx dx -cosn-1 x sin x sin x (n-1)cosn-2x sin x dx cosn-1x sin x sin2 x (n-1)cosn-2x dx cosn-1x sin.Since 3 4 ex sin(x) dx excos x exsin x - exsin x dx 2ex sin(x) dx exsin x - excos x ex sin(x) dx 1/2exsin x - cos x We manage to find the integral, yet the sign of integration still remains a part.The procedure, however, is not the same for every function.The interactive transcript could not be loaded.





For the last step, how to convert the int sec2(theta) tan n-1(theta)dtheta to frac tan n-1thetan-1?
It doesn't produce any result at this stage; therefore.
Tan 2(x) dx 1 n-1) tan (n-1) x - tan (n-2 x).